

PFC meeting @UCSD, Feb. 28 - Mar. 2, 2006

Be and C mixed material studies

Parametric studies on carbon chemical erosion mitigation dynamics in Be seeded deuterium plasmas

PISCES —

D. Nishijima, M.J. Baldwin, R.P. Doerner and R. Seraydarian

Center for Energy Research, University of California at San Diego, USA

In ITER strike point region, strong interaction between Be and C is anticipated

PISCES -

- Previous results from PISCES-B; Carbon erosion is reduced by Be impurity in the plasma.
- Next questions:
 - How quickly is carbon erosion suppressed by Be layers formation?
 - What are the important parameters responsible for carbon erosion mitigation time (protecting Be layer formation time)?

PISCES-B allows to expose a sample to Be seeded plasma

PISCES

- The concentration of Be ion within the plasma column, measured with absolutely calibrated spectroscopic system, can be controlled by varying the temperature of the oven.
- Axial profile of CD band emission is monitored to characterize carbon chemical erosion.

Be

Small amount of Be impurity in the plasma suppresses carbon chemical erosion

PISCES

CD band intensity is decreased with Be injection.

Carbon chemical erosion is reduced.

Decay rate of CD band is used to measure Be surface coating time.

XPS analysis shows formation of beryllium carbide (Be₂C), responsible for carbon chemical erosion mitigation

PISCES -

- XPS analysis of Be on C sample surface to examine chemical binding of elements
- After Be seeding D-plasma exposure,
 - A carbidic peak appears and a graphitic peak disappears in C 1s spectra.
 - Also in Be 1s spectra, a carbidic peak emerges.
 - Carbide forms more readily at higher surface temperature

Unexposed ATJ graphite target Rough and porous surface (typical of machined graphite)

D plasma exposure with no Be D ion fluence $\sim 2x10^{26}$ m⁻², T_s ~ 600 K Cone like appearance (chemical erosion)

D/Be mixture plasma exposure

D ion fluence ~ 1.2x10 26 m $^{-2}$, BeII/n $_{\rm e}$ ~ 0.1 %, T $_{\rm s}$ ~ 600 K

Smoother surface (sub-micron level roughness), due to deposition of Be

PISCES

- I_{Dγ}: To monitor background plasma change
- $I_{Bel}/I_{D\gamma}$:

 To monitor Be injection
- $I_{CD}/I_{D\gamma}$ (near)- $I_{CD}/I_{D\gamma}$ (far):

CD band intensity far from the target is subtracted from that near the target to eliminate changes in CD band originated from wall C.

n_{Be+} from I_{BeII(467.3nm)}

Parametric studies on CD band decay time, in other words, protecting Be layer formation time

PISCES

Dependences on:

- Be ion concentration (c_{Be+})
- Incident ion energy (E_i)
- Surface temperature (T_s)
- Incident ion flux (Γ_i)
- Scaling expression (c_{Be+} , E_i , T_s , Γ_i)

- Scan c_{Be+} while keeping other parameters, E_i , T_s and Γ_i constant as much as possible.
- Fit of power function, $\tau_{CD} = \alpha \ c_{Be+}^{\ \beta}, \ gives$ $\alpha = 1.27 \times 10^{-3}, \ \beta = -2.07,$ showing relatively strong dependence.
- Scan each parameter, E_i,
 T_s and Γ_i, while keeping
 others ~constant

- Derive τ_{CD} at $c_{Be+} = 10^{-3}$ by assuming $\beta = -2.0$ in power law $\tau_{CD} = \alpha c_{Be+}^{\beta}$ to compensate c_{Be+} dependence.
- A power function fit reveals τ_{CD} is nearly proportional to E_i .
- At higher incident energy, Be deposited on C target can be more readily sputtered before Be₂C is formed, resulting in longer τ_{CD}.

- At a higher surface temperature T_s of \sim 950 K, τ_{CD} is shorter than that at $T_s \sim$ 600 K by a factor of \sim 20.
- Quicker formation of beryllium carbide (Be₂C) at higher T_s.
- The parameter β in $\tau_{CD} = \alpha$ c_{Be+}^{β} at $T_s \sim 950$ K is nearly the same as that at $T_s \sim 600$ K.
 - \Rightarrow The same trend with respect to c_{Be+} .

τ_{CD} has possibly a very weak dependence on incident ion flux

PISCES

- At a lower incident ion flux of ~ $1x10^{22}$ m⁻²s⁻¹, τ_{CD} is found to be approximately 2.5 times smaller than that at Γ_{i} ~ $3x10^{22}$ m⁻²s⁻¹.
- However, higher T_s can lead to shorter τ_{CD} .
- Again, the parameter β is about -2.

τ_{CD}^{exp} obey the scaling law well;

 τ_{CD}^{scale} [s] = 1.1e-7 $c_{Be+}^{-1.85}$ $E_i^{1.0}$ $\Gamma_i^{-0.5}$ exp(4.7e3/ T_s)

PISCES

- Weak negative power law dependence on Γ_i .
- At higher flux, redeposition fraction of Be is increased, leading to shorter τ_{CD} .
- Extrapolation to ITER*

$$\begin{cases} c_{Be+} = 0.05, \ E_i = 20 \ eV \\ T_s = 1200 \ K, \ \Gamma_i = 10^{23} \ m^{-2} s^{-1} \end{cases}$$

$$\Rightarrow$$
 $\tau_{CD} \sim 9$ msec (<< 1 sec)

 Protecting Be layers can be formed between ELMs.

*G. Federici et al., JNM 266-269 (1999) 14.

- Small beryllium concentration in the plasma suppresses carbon chemical erosion.
- XPS analysis shows beryllium carbide (Be₂C) layer is formed on a carbon sample after Be seeding deuterium plasma exposure with the surface temperature above 450 K.
- Parametric studies on carbon chemical erosion mitigation dynamics reveal the following dependences;

Strong Surface temperature exp(4.7e3/T_s) (600 K - 970 K)

Weak

Be concentration $c_{Be+}^{-1.9}$ (3x10⁻⁴ - 1x10⁻²)

Incident ion energy E_i^{1.0} (15 - 85 eV)

Incident ion flux $\Gamma_i^{-0.5}$ (1-4.5x10²² m⁻²s⁻¹)

• More work is still needed at higher T_s , higher E_i and higher Γ_i .